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So t~, can be calculated using the fast Fourier 
transform, which involves O(N log2 N) operations. 

The v e c t o r s  OC/Ofijm and e 3 c a n  be calculated in an 
analogous way. In total, six Fourier transforms are 
need in each cycle: 

(i) one Fourier transform for the determination of 
Fhkt from the current EDD; 

(ii) one Fourier transform for the determination of 
the vector OC/Ofjm; 

(iii) one Fourier transform for the determination 
of the vector e3; 

(iv) three Fourier transforms for the determination 
of t~,,. 
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Abstract 
New approaches to the interpretation of contrast- 
variation data from monodisperse systems using 
spherical harmonics are presented. A general method 
is given for evaluating the particle shape and internal 
structure and expressions for the scattering from the 
density fluctuations inside a particle with a known 
shape are derived. Further, the scattering from two- 
component particles is analyzed in terms of the 
positions and/or shapes of the components and the 
information content of the contrast-variation data is 
discussed. The methods can be used for advanced 
low-resolution structure analysis of various types of 
biopolymers in solution. 

Introduction 
Small-angle scattering (SAS) is one of the most 
effective methods of investigating the superatomic 
structure of native biopolymers and their complexes 
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in solution (Feigin & Svergun, 1987). The SAS inten- 
sity I(s) of a dilute monodisperse solution of bio- 
polymers is proportional to the scattering from a 
single particle averaged over all orientations [here s 
denotes the modulus of the scattering vector s, s = 
(4rr/,~)sin0, ,~ is the wavelength and 20 is the scat- 
tering angle]. Recent developments in experimental 
techniques (see e.g. Feigin & Svergun, 1987, ch. 8; 
Koch, 1991) allow one to register precise SAS curves 
over a wide range of scattering vectors and com- 
prehensive data interpretation is therefore of great 
importance. 

As solution scattering provides low-resolution 
structural information, it is usually interpreted in 
terms of homogeneous particles. Shape modeling is 
still one of the most frequently used approaches 
(Feigin & Svergun, 1987, ch. 3.5). The direct method 
of Stuhrmann (1970b) with the recent improvements 
of Svergun & Stuhrmann (1991) allows low- 
resolution shape determination using a straightfor- 
ward procedure. As the scattering-length density of 
biopolymers in solution is by no means homo- 
geneous, shape modeling or determination, in a strict 
sense, has to be applied to the 'shape scattering' 
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curves. The latter can be obtained by the contrast- 
variation technique (Stuhrmann & Kirste, 1965, 
1967), where the excess scattering-length density of 
the particle is divided into two parts: 

p(r) = ~p¢(r) + ps(r), (1) 

where pc(r)= 1 inside the particle and zero elsewhere, 
ps(r) describes the density fluctuations with respect to 
the average value ~ =  (p ( r ) ) -po  (P0 is the solvent 
density). The SAS intensity from an ensemble of 
dissolved particles is then represented as a sum of 
three basic functions 

l(s,-p) = p 2 L ( S  ) + -pLs(S) + L(S). (2) 

Here, Ic(s) is the shape scattering curve, Is(s) is the 
scattering from inhomogeneities and l~s(S) is the cross 
term. By varying the scattering density of the solvent 
Po, one obtains I(s,-fi) at different contrasts ~, which 
makes it possible to evaluate the basic functions (if 
the scattering curves for three or more contrasts are 
available). 

As seen from (2), contrast variation provides not 
only the shape scattering curve but also information 
about the inner structure of the particle. The latter is 
usually analyzed only in terms of the contrast 
behavior of the radius of gyration (Stuhrmann & 
Kirste, 1967). Only in special cases can a more 
detailed analysis be done, for example, for spherical 
particles (e.g. Cusack, Ruigrok, Krygsman & 
Meilema, 1985). In the present paper, new 
approaches to the evaluation of the internal structure 
of particles in solution are presented. 

1. Multipole expansion 

In this paper, we use extensively the formalism of the 
multipole expansion. The main equations are pre- 
sented below but a more detailed description can be 
found in the original papers of Stuhrmann (1970a,b). 

A particle density distribution p(r) can be rep- 
resented as a series 

L l 

p ( r )  -"  p L ( r )  = Z Z Plm(r) Ylm(°°), (3)  
1 = ~ =  -1 

where (r,w)= (r,O,~o) are spherical coordinates, 

Ptm(r) = .f p(r) YL(¢o) do) (4) 
o) 

are the radial functions and Ylm(02) are spherical 
harmonics. The truncation value L describes the 
resolution of the representation of the particle struc- 
ture [pL(r)~p(r) when L-, oo]. With this expansion, 
the particle SAS intensity is expressed as (Harrison, 
1969; Stuhrmann, 1970a) 

L l 
I(s) = 27r 2 )-" 2 IA.,,(s)l z. (5) 

l=0 m= - I  

Here, the partial amplitudes &,,(s)  are given by the 
Hankel transforms of the radial functions 

o o  

A1,,(s) = il(2/rr)l/2 f plm(r)jl(sr)r 2 dr, (6) 
0 

where jl(sr) are the spherical Bessel functions. 
The aim of the SAS data interpretation using the 

multipole expansion is to distinguish between the 
different multipole contributions in I(s), which would 
then allow restoration of the distribution p(r). This is 
obviously impossible unless appropriate additional 
information about the particle structure is available, 
giving constraints on the p(r) distribution [e.g. par- 
ticle symmetry (Svergun, Feigin & Schedrin, 1982)]. 
One of the most important restrictions is the assump- 
tion that the particle is homogeneous. The structure 
of a wide variety of homogeneous particles can be 
described with the help of the angular shape function 
F(w) as 

p(r)={100<r<F(W)r>_F(w). (7) 

This function can also be developed into the series 

L / 

F(o~)-" Fi . (w)= Y. Y. ftmYlm(Og), (8) 
1=0 m= -1 

where the multipole coefficients are complex 
numbers 

flm = f F(w)Y'~,,,(w)dw. 
o ~  

The set of tim coefficients describes the shape of the 
particle at the given resolution. Representing the 
spherical Bessel function as a power series 

Pmax 

jl(sr) = ~. dlp(sr) I+ 2p, (9) 
p=0  

where 

dip = ( -  1)P/2Pp![2(l+p)+ 1]!!, 

and substituting this series into (6), one obtains 
(Stuhrmann, 1970b) 

Pmax 

AI,,(s) = fl(2/Tr) 1/2 Z dip sl+ 2" f y~m(wldw 
p=O to 

F(,o) 
X f r l+2p+2 dr 

r = 0  

Pmax 

= (is)l(Z/Tr)l/2 ~. [dlpfl~l,+ zp+ 3)/(/+ 2p+ 31]s 2p, 
p=0 

(10) 

where 

f l  q) = f [F(w)]q Y~(eo) do). (11) 
¢o 
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The coefficients of the power series of the partial 
amplitudes and hence the SAS intensity are thus 
expressed as a nonlinear combination of the multi- 
pole coefficients flqm ) of the shape function. These 
relationships can be used to find the shape by mini- 
mizing the deviations between the experimental and 
calculated intensity curves. With the improvements 
described by Svergun & Stuhrmann (1991), the 
method was shown to be useful for the shape deter- 
mination up to the resolution of L--7, that is, for a 
rather detailed shape description (see e.g. K6nig, 
Svergun, Koch, Hfibner & Schellenberger, 1993). 

2. Scattering from an inhomogeneous particle 

Let us consider the general case of the in- 
homogeneous particle with the envelope described by 
the shape function F(w). The particle density can be 
represented as 

p(r )= Z Z p~,~,(r)Y,.~,(w) r<_F(w) 
~=0 ~,= -~ (12) 

0 r> F(w), 

with the radial functions p,,,(r) expressed in terms of 
the power series 

N 
poor- (13) 

n=0 

where the e(") _~, are complex numbers. Substituting 
(12)-(13) into (6), one obtains for the partial 
amplitudes 

Pmax 
Blm(S) = it(Z/rr) ~/2 Z dip Sl+2p 

p=0 
L v 

X Z Z f Yvlz(o)) Y~m(O)) dw 
v'=O /x=--~' o) 

N F(¢o) 
x Z e(n) f rl+,+2p+2dr. (14) ~P/d, 

• .=0 r=O 

The integral over r again results in the power of the 
shape function F(o0 as in (10). In order to take the 
integral over oJ, we make use of the expression for 
the product of two spherical harmonics (Edmonds, 
1957, p. 63): 

Y,,u(w)Y*(o) 

] = ( - 1 )  m f(2l+ 1)(2v+ 1)(2k+ 1 ) 1/2 

k = I I -  ~1" 47r 

x 0 p, m - p ,  

where are 3j Wigner coefficients [equal to 
/z 

zero except for t = - m - l z  (Edmonds, 1957, p. 45)]. 

Inserting (15) in (14), one obtains 

Btm(S ) = ( -  l)m(is)'(2/Tr) 1/2 
Pmax L v N 

X Z dip S2p Z Z Z p(n) 
p = O  v = O ~ =  -vn=O 

k = It- ,'1 4"rr 

( ;  /] ~ )  ( L  /2 k ) f~ /+  n + 2p + 3 ) . / K , m  --/.Z 

x 0 # m - t z  l + n + 2 p + 3 "  

(16) 

This general expression enables one to evaluate the 
partial amplitudes for an inhomogeneous particle. 
They depend both on the coefficients ftqm ) defining the 
particle shape and on the coefficients _r(")~, describing 
the density distribution inside the particle. The scat- 
tering intensity of the particle is readily calculated 
from the partial amplitudes using (5). This expres- 
sion therefore gives a convenient parameterization 
for the determination of the particle structure in the 
general case, in particular using contrast-variation 
data. 

With a set of experimental data {Ie(S,-d)} for differ- 
ent contrasts, shape determination and evaluation of 
the inner structure can be done in two successive 
steps. Indeed, the shape scattering curve It(s) can be 
evaluated first and the particle shape (i.e. the set of 
coefficients ftm) can be determined following the pro- 
cedure described by Svergun & Stuhrmann (1991). 
The representation (12)-(13) is then used to describe 
the density distribution of the inhomogeneities ps(r). 
As the shape coefficients f l~  are already known, the 

r,(n) partial amplitudes Bl,,(s) will depend only on _~,. 
The same will be true for the scattering intensity at 
the contrast ~: 

It(s,-fi) "- I,(s,-~,{c~}) 
L 1 

= 2 "a'2 Z Z [-fiZ[Atm(S)[2 
1=0 m= - I  

+ -~IA,m(S)B*..(s) + a~m(S)~,m(S)l + IB,m(S)I 2] 
(17) 

[here the amplitudes Arm(S) refer to the shape scat- 
tering and are evaluated according to (10)]. The 
coefficients e(n) -v~, can then be found by minimizing the 
deviations between the set of experimental curves 
{/~(s,~)} and the theoretically evaluated curves (17), 
e.g. by minimizing 

Smax 
~j (s f  {[le(S,-pj) -- It(s,-fij)]/or(s,-pj)} 2 ds) 

Rp= , (18) .1} s, /o(s, 2 ds 
j ~. Smi n 
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where the index j runs over the contrasts and the 
function o-(s,~j) gives the experimental errors in the 
j th data set I~(s,-~). The function R o is nonlinear with 
respect to the coefficients r (") therefore, its minimi- 
zation requires optimization techniques similar to 
those used in the shape determination (Svergun & 
Stuhrmann, 1991). 

The number of terms N +  1 in the power series (13) 
representing the radial functions can be chosen as 
follows. It is natural to demand the same spatial 
resolution for the radial functions as for the envelope 
function. At a given radius Ro, the spatial resolution 
of the shape function provided by the series (7) is 
about Rorr/L. Since a polynomial of the (N+  1)th 
degree can have at most N + I  zeros on [0, R0], the 
resolution of the radial function is approximately 
Ro/N, leading to the estimate N =  L/rc. 

The coefficients describing the shape and the radial 
functions of the inhomogeneities are not indepen- 
dent. Thus, by definition of ps(r), 

f p s ( r )  d 3 r  
F(w) 

L v N F ( o ~ )  

= ~ ~ f Y,, . (o))do)~ c ~  f r~+~dr 
v = 0  ~ =  - - v  eo n = 0  r = 0  

L v N 

= ~ ~ ( - 1 )  ~" ~ ~,,~,r(")[f~+3)]*/(n+3)=0. 
v = O  p . =  - v n = 0  

(19) 

Additional correlations can be obtained for the con- 
trast dependence of the radius of gyration, 

R~(~) = R~ + a / p -  /3/-~z (20) 

[Stuhrmann & Kirste (1967); here, a and /3 are 
commonly accepted notations that should not be 
confused with the Euler angles used below]. 
The radius of gyration at infinite contrast ob- 
viously depends only on the shape coefficients 

( 5 )  3 )  (RE = 3foo/Sf~6o), whereas for a one obtains 

a = V~-' f ps(r)r 2 d3r 
F(,o) 

L v N 

- v ; - ' Z  E (-1)"E ~"> (" + ~>* - c ~ , [ f ~ ,  ] / ( n + 5 ) ,  
v = 0  /z  = - -  v n = 0  

( 2 ~ )  

where V~ = (4~/9)~/2f~) is the particle volume. The 
equation for fl involves coefficients f~+4) and is 
more complicated. These correlations can be used as 
additional constraints in the minimization of the 
function (18). 

3. Scattering from fluctuations 

The above formalism can be applied to a practically 
important case of scattering from density fluc- 
tuations, i.e. the inhomogeneities that are small in 
size compared to the particle itself. In many applica- 

tions, e.g. when proteins of high molecular weight 
are studied, the particle is 'almost' homogeneous at 
the resolution normally achieved in SAS (about 
3-4 nm; the shape scattering dominates in the corre- 
sponding range of momentum transfers). Even in 
such cases, however, the outer part of the scattering 
curve still contains a non-negligible contribution 
from the fluctuations that influence the results if one 
uses the homogeneous approximation without per- 
forming contrast variation. The following question is 
therefore of practical importance: given the particle 
shape, is it possible to estimate deviations from the 
shape scattering resulting from the high-frequency 
(e.g. for proteins of size about l nm) density fluc- 
tuations inside the particle? 

Let us first consider a practical example that illus- 
trates the influence and appearance of the intrapar- 
ticle density fluctuations. In Fig. 1, the structure of 
formate dehydrogenase (molecular weight 86 kDa; 
Lamzin et al., 1992) is shown at the different resolu- 
tion levels: the trace of the C ~ atoms is presented in 
Fig. l(a) and the envelope function in Fig. l(b) (the 
latter is evaluated from the atomic coordinates using 
harmonics up to L = 7 by the procedure briefly 
described in § 5). In Fig. 2(a), curve (1) corresponds 
to the shape scattering from the envelope function 

(a) 

2 n m  

...... .,.: ~.,.~,,,.~ 
...... ~..'..~i::iiiiiiiiiii::iii~iii?:::i@.:::!~ 

?!~ ~ ::~:i!!~!iiiii!!iiiii!!!i!t~ 
: ! ! i  : : :~::  : i :  i:: ~ " :': ""i " i .: i ii : ; . : :::::::::::::::::::::::::::: 

"%li~i::.:;~i:: i::ii~!~::::i i:: ::~::::i:: :::: :::: ::::::::::::::::::::::::::::: ::::::::::::::::::::: ~, :.'.,~:.~.<,,.;~: ~,: ~: ~: ~: ~: ~:~: ~:~: ~: :,~:~:~;~ ~ , ~ . ~ ; ~ , : ~  

(b) 
Fig.  1. F o r m a t e  d e h y d r o g e n a s e  ( a p o  fo rm) :  (a)  C ~' t r ace ,  (b) 

e n v e l o p e  f u n c t i o n  u p  to  r e s o l u t i o n  L = 7. 
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whereas curve (2) is obtained from solution- 
scattering experiments. The two curves coincide well 
up to s -  1.5 n m - '  but at higher momentum trans- 
fers the experimental curve goes systematically 
higher owing to the internal density fluctuations. Fig. 
3 presents the particle density along the line shown in 
Fig. l(a) evaluated from the electron-density map at 
0.6 nm resolution, which gives a typical pattern of 
the density fluctuations inside the particle. 

A general model of such fluctuations can be intro- 
duced in the following way. Let us assume that there 
are density fluctuations of magnitude 2A and size 

A/(p) 
1 f. 

0.5 i 
Log/ ,  relative 

0 "---------~ Oi " .................... 
516 7 ' 8  9101112  

- . ~  .............. ( 2 )  

- ~  - - ( 3 )  

, =  ...... 

-31- .~"" ......................................... 
'= ....- 
[ °.---" ...... 

- 4 ~  . . . . . f -  
, , . . . - - " °  ...... - 

- 5 t  
0 1 2 

s (nm -1) 

(a) 

Log /, relative 

° I i _ ~ ~ ~ 2 - -  _ _ ~ . - . .~ . :~  ~ 

3~ . . ' "  J ~  .............. [L.J , f ' ' ' ' "  " - -  5 1.84 
- ~ ~ . . . ' "  - -  e 1 . 5 3  

- ~ ~ i - -  .... 8 1.1~ 
_ 5 ~  ~ _ . . - ~  ~ 1.02 

l " - -  -"- 10 0.92 
_ 6 ~ . .  ~ .... 11 0.84 

• • 12 0.77 
- 7  i i 

,0 1 2 
s ( n m  -1) 

(b) 

Fig. 2. Scattering from formate dehydrogenase. (a) (1) Shape 
scattering from the envelope function, (2) scattering in solution, 
processed experimental curve, (3) its fit using scattering from 
fluctuations, (4) net scattering from inhomogeneities. The 
weights A, are shown in the insert. (b) Scattering from fluc- 
tuations of different sizes (the orders of harmonics and the 
corresponding 8r values are given in the list). 

6r < < Ro inside a particle with a shape F(oJ) and a 
characteristic size Ro. With no loss of generality, the 
density of fluctuations A&(r) can be represented as a 
product of its radial and angular components: Apf(r) 
= 2A&(r)g(w) ,  where both components display the 
density fluctuations of average size 6r. These condi- 
tions can be met by choosing 

I t& (r) = A &  (r, v) 

= 2 A A & ( r ) R e  [ Y,~,(w)] 

= aApf(r )[  Y,,,,(w) + Y***(w)] (22) 

inside the particle and dp f ( r )=  0 elsewhere. Here, 
the radial distribution of fluctuations dp(r) is a 
multistep function 

Apf(r) = ( -  1)  int(r/ar) (23) 

(Fig. 4a), whereas the order of harmonics v should 
be taken in such a way that the average tangential 
fluctuation, (rr/v)Ro, is equal to 6r (Fig. 4b). The 
characteristic particle size (namely mean-squared 
size) is just the radius of gyration of its shape Rc, 
therefore, 

v "" r rRc /&.  (24) 

Both radial and angular components vary in the 
range [ - 1 , 1 ]  and their product results in a three- 
dimensional oscillating density distribution inside the 
particle. 

Inserting (22) into (6) and using again the power 
series expansion (9), one obtains for the partial 
amplitudes 

e~ 
Blm(S) = 2Ait(2/rr) 1/2 Z dlpJ + 2p 

p=0 

x f Y~(~) y~(~) do~ 

F(,o) 
X f Aps(r)r 1+2p+zdr (25) 

r=0 

p l O - a e  nm -3 

0.2 
i 

o 

-0.2 ~ - 

-0.4 

0 2 4 6 
r (nm) 

Fig. 3. Electron density in formate dehydrogenase along the line 
shown in Fig. l(a). The zero level corresponds to a density of 
250 e nm-3 (average electron density of the crystallographically 
ordered structure). 
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(for simplicity, we omit the complex conjugate of 
Y~,; it is shown below that this makes no difference). 
The inner integral over r for the multistep function 
(23) is equal to 6r[F(w)]l+2P+2/2 (see Appendix). 
Again, using (15), one obtains 

Prnax 

B,m(S) = ( -  1)mfl(Z/rr)'/2(aSr) ~ do, s '+ 2p 
p = 0  

l + v  

2 
k = It- "1 

(2l+ 1)(2v + 1)(2k + 1).] 1/2 

x .,, , . . 0  - m  l.t m - - t ~ Y  ' ' m - "  " 
(26) 

In fact, (22) describes a regularly, not statistically, 
distributed density of fluctuations. Hence, (26) does 
not yet adequately describe scattering from fluc- 
tuations: the partial amplitudes (and, therefore, the 
intensity) depend on the relative orientation of F(w) 
and Y,,~,(w). This can be avoided by averaging the 
scattering intensity from fluctuations over these 
orientations. The relative orientation of F(w) and 
Y~,(w) is changed when either of them is rotated [we 
describe the rotation by the Euler angles a, /3,  y as 
defined by Edmonds (1957, p. 7)]. The results are 
more easily analyzed in terms of a rotating particle, 
the shape coefficients of which change owing to the 
rotations as 

l 
( l ) ,  q) 

gl~(af l  y ) =  l-I,~t3~{flqm)} = 7". ~ ,.,,,,(afl y) f t~, ,  
trt ' ~ -- l 

(27) 

- 1  

Apf 

t$r 

(a) 

1 
I 

+ + - + - I + + 
I 

+ + + - + - + 

+ + + - + - + 

+ + + - + - + 

+ + + - + - + - 

+ + + - + - + 
- 3 .  

cos 0 

~o > 0 n 

(b) 

8r 

271 

Fig. 4. (a) Radial and (b) angular components of the fluctuations 
[in (b), isolines Y94(to)= 0 are shown]. 

where . ~  ( / ) , m ( f f f l ] / )  is the operator of finite rotations 
[Edmonds (1957, p. 55); here, ( a f t y )  means 
dependence rather than product]. Note that the 
shape coefficients of all degrees change simultane- 
ously according to (27) with the same operator 

9 '  ( / ) , m ( a ~ ' ~ ) .  The orthogonality of ~ (~),,,,(afly) reads 

q9 *~aa a,) d (a f t  y) (1/8rr2) f ~ (lm'!m,(O/'~ ?/)f-l" m'2m2'~ t -  . . .  
t o  

= ~mtm2~m,m,z~,,,2[1/(2l, + 1)], (28) 

where the integral is taken over all orientations and 
6ij is the Kronecker delta (equal to zero unless i =j). 
From these orthogonal properties, several important 
consequences can be deduced. 

(i) The average value of each coefficient gt~ is 
given by 

1 

(gt2) = X ft2' f ~ ( / m ) ' m (  f f ~  'Y) d (aft T) = 0 
m ' =  - - I  to  

(29) 

unless /=m=0 .  This means that the averaged 
scattering amplitude of the inhomogeneities is zero 
(the monopole term in the scattering from fluctua- 
tions has to be zero by definition). The same is true 
for the cross term between the shape scattering and 
the scattering from the fluctuations, which contains 
the averages of the cross products of the shape 
coefficients for the fixed and rotating particle, 

q 2 )  * Qet%), gt~m2 > =fl,q~ ,, <g1~22") = 0. 
(ii) The average of the cross product gt,% ), ~q2~* ~2~12m 2 

where both coefficients belong to the rotating 
particle, is 

q 2 )  * (gtq,~,gl~m= ) =  ~m,m2~m,m,2~t, t2[l/(2ll W 1)] 
I i  

x Z ftq,~ftq,~ * 
i n =  -- l! 

= C(l,,ql,q2). (30) 

This means that the cross terms between the coeffi- 
cients with different indices (not different degrees!) 
will vanish in the scattering intensity from 
inhomogeneities. 

(iii) As all the average cross products (30) depend 
only on the index l, the scattering intensity from 
inhomogeneities will not depend on the actual value 
of the index/z. This is what one could have expected 
given the fact that the order of integral transform (6) 
for the partial amplitudes depends only on l, not 
o n  m. 

Using (29)-(30) and taking /.t = 0 for simplicity 
[that is, Apy(r,v)= 2AApy(r)Y~o(O~)], one arrives at 
the following expression for the partial scattering 
intensities from the fluctuations of magnitude 2A and 
average size 6r = 7rRc/v: 

l l m ( S )  ~ - ( n l m ( S ) n ~ S m ( S ) >  

2l  2 =s (At3r/Tr) (2l+ 1)(2v+ 1)/2 
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2pm~ min(popm.~) 

x Z s2p Z dttdt, p- t  
p = 0  t=max(O,p-pm.~) 

× y~ ( 2 k + l )  
k=lt-vl 0 - - m  0 

x C[k, l+ 2 t +  2,l+ 2 ( p -  t) + 2]. (31) 

The total scattering intensity l~(s) is again evaluated 
by summing up the multipole contributions accord- 
ing to (5). 

The most important feature of the scattering from 
fluctuations as introduced here is that the cross term 
between the fluctuations and the shape scattering 
vanishes and the fluctuations term is additive. This 
means that the fluctuations do not correlate with the 
particle shape, although they are defined inside the 
particle, and therefore proves their 'quasistatistical' 
nature. In particular, the parameter a in equation 
(20) for R~ is always zero, which is what one should 
expect as the 'denser' and 'less dense' regions are 
uniformly distributed inside the particle. 

In practice, the fluctuations do not have a fixed 
size and their density can be described as a linear 
superposition of the functions (22): 

dp/(r)  = ~" A~dp/(r ,v) ,  (32) 
v 

where the weight A,, represents the magnitude of the 
fluctuation component of size 8r = 7rR~/v. 

To illustrate the proposed approach, let us con- 
sider again the case of formate dehydrogenase. Fig. 
2(b) presents the scattering evaluated from the fluc- 
tuation components with ~r from 1.8 to 0.8 nm 
(corresponding to v from 5 to 12). The experimental 
scattering curve can be well fitted using the shape 
scattering curve and the linear superposition (32) of 
these functions [curve (3) in Fig. 2a]. The amplitudes 
of fluctuations A~ were allowed to range from zero 
up to the level of the average particle density (p); 
normalized amplitudes of the best fit A~/(p) are 
presented in the insert in Fig. 2(a). The net scattering 
from fluctuations [curve (4) in Fig. 2a] corresponds 
to the average size of around 1.4 nm, in agreement 
with the profile presented in Fig. 3. Note that the 
amplitudes of the shorter fluctuation components are 
nearly zero in the fit because the information about 
smaller inhomogeneities is not contained in the range 
of momentum transfers used. 

Another example is given by the myoglobin mol- 
ecule, for which the influence of the inhomogeneities 
should be much stronger owing to its low molecular 
weight (17 kDa). The atomic coordinates of myo- 
globin (Watson, 1969) were taken from the Protein 
Data Bank (Bernstein et al., 1977). In Fig. 5(a), the 
trace of the C '~ atoms is shown. Fig. 5(b) presents the 
envelope function (resolution L = 7). In Fig. 6(b), the 
scattering from fluctuations with ~r from 1 to 0.4 nm 

(v from 5 to 12) is presented. Fig. 6(a) shows the 
shape scattering from the envelope in Fig. 5(b) [curve 
(1)] and the scattering intensity in vacuo evaluated 
from the atomic coordinates using the Debye for- 
mula [curve (2)] as well as its best fit using the 
superposition of fluctuations [curve (3); the 
normalized amplitudes A,,/(p) are shown in the 
insert]. In fact, such a small protein (R~ = 1.5 nm) 
already presents the limiting case for application of 
the concept of the scattering from fluctuations as its 
dimensions are comparable to the size of fluc- 
tuations. Thus, no good fit can be expected in the 
range 2 < s < 4  n m - I  where the cross term plays a 
significant role. Nevertheless, for s > 5 n m - l ,  where 
the scattering from the inner structure dominates 
both the shape scattering and the cross term, the fit is 
much better and the net scattering from fluctuations 
[curve (4)] is in good agreement with the experimen- 
tal data of Ibel & Stuhrmann (1975). 

(a) 

1 nm 

-~i~ ~:: ..~:~i: : ~ ....... ~ 

(b) 

Fig. 5. Myoglob in  molecule: (a) C" trace, (b) envelope function up 
to resolution L = 7. 
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4. Complex particles 

Particles consisting of two or more components are 
of particular interest for contrast-variation studies as 
the additional information provided by contrast 
variation is represented in a very clear form. Let the 
particle have two distinct components A and B. The 
total scattering intensity is then 

I(s,-~) = I(s,-fi=,-~b) 
L l 

= 2"/7"2 Z ~'. [-pZIAzm(S)I 2 + -P,,-PblAz,,,(s)B*m(s) 
l - - 0  m =  - - I  

+ A*m(s)B,m(S)[ + -~,lB,m(S)12], (33) 

where ~a and ~b are the contrasts of the components 

A/(p) 

Log I, relative 0.5 

I "N. 5 6 7 8 91011 2 (1) 
- 1 l  \ ~ - ( 2 )  

_ _ 5 [  ° " ~" 
0 5 ..................... 10 

s(nm -1) 
(a) 

Log/, relative 

and Aim(S) and Blm(S) are their partial amplitudes. 
Contrast variation therefore separates the informa- 
tion about the structure of the two components 
(contained in the squared terms) and their relative 
position (contained in the cross term). 

Let us assume that we know the partial amplitudes 
of the two components A~,,(s) and B~,,,(s). Then, the 
scattering intensity will depend only on the relative 
position of the components. With the first com- 
ponent fixed, the relative position is described by the 
rotation of the second component by the Euler 
angles a, fl and y, followed by a displacement along 
the vector u = (u,to,). The new partial amplitudes of 
the second component can be analytically expressed 
as (Svergun, 1991) 

L p 

B}~(s) = 4 7 r ( -  1 ) "  ~ iPjp(su) ~'. Y*q((O.) 
p = O  q =  - p  

'+p 
x ~" P 

k=lt-Pl 0 

[ ( 2 / +  1)(2p + 1)(2k+ 1)]  1/2 

t =  - k  4"/7" 

l p k ) 
(m k)  q,t(Ol~ "y)Bkt(S). 

- m  q m - q  
(34) 

The scattering intensity at each contrast (33) is thus 
expressed in terms of six parameters, which can be 
evaluated by minimizing function (18), and this 
allows one to determine the mutual positions of the 
components. 

If the partial amplitudes of the components are 
not known, they should also be involved in the 
minimization procedure. Two practically important 
cases can be distinguished. If A and B are separate 
domains as in Fig. 7(a), they can be described by 
shape functions F(w) and G(to), respectively; these 

or:L are developed into the series and the amplitudes 
are expressed v/a the corresponding shape coeffi- 

~ . .~ .  cients. The core-shell case where the particle consists 

1 

3 

- 4 L , ' / / . / i . "  ..... 7 0.71 ,.~i!iiiiiii%:. , ~ ! i i i ~  
V / / "  - -  ..... 8 0.62 ~ ~ ,  G(w} ~.~.i!!ii!~:.~i[!i!!!i[~. 

- 5  I / . : " .  - -  9 0.55 ,~i ~iiiiiiiiiiiiii ~ ~ ~iiiiii!iiiii!!i~!~ 

: 0 .  i! iiii!i;i!  i!i  , - 6 f"- ..... 11 0.45 
• . ~ o . , ,  ,ii~!!ii~iiiiii!i~i!!!i~i!i~!iii~!il <~ ~ ~ ~  

- 7 , , iiiii!iiiiii iiii!iiiiiiiiiiiii!iiii cx ~ y i A "iiiiiil iiiii ii i!iiii!i7 0 5 s (nm- ' )  10 ~i i i  i iiiiiiiiiiiiiiii!ili!i!i i' i~i~ii ~ : ~ i m ;  

(b) ........ 
(a) (b) 

Fig. 6. Scattering from myoglobin. The notation is as in Figs. 2(a) 
and (b) except that curve (2) in (a) was evaluated from the Fig. 7. Types of two-component particle: (a)two distinct domains; 
atomic coordinates. (b) core-shell model. For explanations see text. 
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of a compact core surrounded by a shell (Fig. 7b) is 
of particular practical importance. This situation is 
also described with the help of two shape functions: 
F(w) corresponding to the whole particle and G(w) 
corresponding to the core. Then, the two com- 
ponents entering (33) are defined as follows: com- 
ponent A is the particle of shape F(w) and density 
pa = p ~ ,  and component B is the particle of shape 
G(w) and density Pb -- Pshell -- P c o r e .  

For the two cases, the total intensity at each 
contrast (33) depends on the shape coefficients f~m 
and glm, which are obtained by minimizing the func- 
tion (18). The rotational and translational param- 
eters are relevant only for the two-domain case. In 
the core-shell case, they are taken into account by 
the function G(w) itself [its center of mass does not 
necessarily coincide with that of F(o~)]. Note that, by 
definition of this model, F(w) >_ G(w) for all w, which 

means that the sets tim and g~m cannot be independent 
of each other. 

5. Program realization 

The methods described above are implemented in a 
set of computer programs written in Fortran77 and 
tested on IBM-PC/MS-DOS, VAX/VMS and several 
Unix platforms (SPARC/Solaris, DEC/Ultrix, 
SGI/Irix). Together with the algorithms developed 
earlier for shape determination, they form a package 
containing more than 100 program entries. 

An important additional tool included in the 
package is the generalized version of the indirect 
regularization program package GNOM (Svergun, 
Semenyuk & Feigin, 1988; Svergun, 1991, 1992). The 
program (called CGNOM) allows one reliably to 
decompose the experimental contrast-variation data 
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F i g .  8.  C o n t r a s t - v a r i a t i o n  d a t a  f o r  t h e  50S E. coli r i b o s o m a l  
s u b u n i t :  ( a )  e x p e r i m e n t a l  d a t a  f o r  7, 14, 24, 32 and 38 w t %  
s u c r o s e  a n d  t h e i r  f it  b y  CGNOM (1)-(5); (b) b a s i c  s c a t t e r i n g  
f u n c t i o n s  f r o m  t h e  l e a s t - s q u a r e s  d e c o m p o s i t i o n  ( s y m b o l s )  a n d  
f r o m  CGNOM ( l i n e s ) ;  ( c )  r e a l - s p a c e  f u n c t i o n s  e v a l u a t e d  by 
CGNOM. I n  ( a ) ,  t h e  c u r v e s  h a v e  b e e n  d i s p l a c e d  by 0.3 l o g a r i t h -  
m i c  u n i t s  f o r  b e t t e r  v i s u a l i z a t i o n .  In  (b )  a n d  (c), (1) r e f e r s  to  
s h a p e  s c a t t e r i n g ,  ( 2 )  t o  t h e  c r o s s  t e r m  a n d  ( 3 )  t o  i n h o m o -  
g e n e i t i e s  [ n o t e  t h a t  I, As) i s  n e g a t i v e  f o r  s > 0.55 n m -  ']. 
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into the basic scattering functions, the necessary first 
step in the use of the general approach [(12)-(18)]. 
The problem is less trivial than it may appear, 
especially in X-ray experiments where the range of 
contrasts is relatively narrow and the point-by-point 
solution of (2) with respect to the basic scattering 
functions can be unstable. This is illustrated in Fig. 8 
for the data set obtained in the contrast-variation 
study of the 50S ribosomal subunit E. coli using 
synchrotron radiation (Svergun, Koch & Serdyuk, 
1994). Five experimental curves presented in Fig. 
8(a) were recorded at different sucrose contents 
ranging from 7 to 38wt% . Their least-squares 
decomposition into (2) produces a result that can 
hardly be used for the further interpretation (Fig. 
8b). The program C G N O M  uses the regularization 
method to evaluate the generalized real-space distri- 
bution function 

p(r,-fi) = -~Zp,.(r) + ~p,.,(r) + p,(r), (35) 

where each basic function in real space is connected 
by the Fourier transform to the corresponding basic 
scattering curve in (2). The experimental data at all 
contrasts are used simultaneously, which significantly 
improves the stability of the solution. The real-space 
functions evaluated from the data shown in Fig. 8(a) 
are presented in Fig. 8(c). Their Fourier transform 
yields the basic scattering curves presented in Fig. 
8(b). 

It is worth noting the several numerical peculiari- 
ties implemented in the algorithms described above. 
As the methods are to be used in the broad range of 
scattering vectors, precautions must be taken con- 
cerning the convergence of the power series of type 
(10). To improve the convergence, we use the 
so-called diagonal Pad6 approximant with the 
coefficients of the power series representation of a 
function f ( x )  transformed into the rational approxi- 
mation 

/(+?zl ) 2k,,~ t, ~ bk x~ ckx k . (36) f ( x ) =  E akx*= Z 1 
k = 0  k = 0  = 

The routine used to evaluate coefficients bk and ck 
from the given set of at is taken from Press, 
Teukolsky, Vetterling & Flannery (1992). Using the 
Pad6 approximant with k m a  x = 20 [that is, Pmax = 39 
in series (10)], scattering curves up to sRc = 20-25 
can be evaluated. 

To check quickly the conditions F(w)___ G(w)___ 0, 
a quasi-uniform angular grid on the surface of 
a sphere is generated using the following algorithm 
(G. Vriend, 1992, private communication): 

0 i = a r c c o s  [ 1 - 2 ( i -  1 )/fk] ) 

~i = 2 ~ ' m o d [ ( i -  1 ) + A - , , A ] / A ~  i= 1,..A + 1, (37) 

where fk is the kth Fibonacci number (defined as fk = 

A-1 "~-fk-2, fo = f l  = 1). The shape f u n c t i o n s  F(Oi,@i ) 
are evaluated on the grid for k = 11 with fk + 1 = 145 
directions, which is sufficient to evaluate the integral 
measure of negativity 

[j /s N(F) = F(w) 2 dw F(w) 2 dw , (38) 

where the first integral is taken over the negative 
F(o~) I N ( F ) = 0  if F(w) is always positive]. The 
measures for the functions F(w), G(o~) and H(o~)= 
F(~o)- G(w) are added as penalties to the function 
(18). The Fibonacci grids with larger numbers of 
directions (e.g. k =  14, .fk + 1 =  611) are used to 
generate the three-dimensional models for graphic 
visualization (cf. Figs. l b and 5b) and to evaluate the 
envelope functions of proteins from the atomic coor- 
dinates. In the latter case, the origin is selected in the 
center of mass of the protein and for each direction 
the most distant atom is found. 

Instrumental effects leading to the smearing of the 
experimental data often play a significant role 
(Feigin & Svergun, 1987, ch. 9) and should therefore 
be taken into account. There are two ways to deal 
with the problem. One way is to desmear the experi- 
mental data, which can be done with the help of the 
program CGNOM. Another possibility is to smear 
the theoretical curves and minimize the function (18) 
in the "smeared' reciprocal space. The instrumental 
smearing can be described with the help of the 
resolution function R(s,s') as 

J(s) = f I(s')R(s,s') ds' (39) 

[here, J(s) is the smeared curve]. Pedersen, Posselt & 
Mortensen (1990) derived the expressions approxi- 
mating R(s,s') by a Gaussian function with the vari- 
able width depending on the instrumental setting and 
the actual value of the momentum transfer s. This 
approach is incorporated in the methods described 
above for fast smearing of the theoretical data. 
Direct fitting of the smeared experimental data is 
preferable when the range of contrasts is wide and 
the smearing effects are strong. This is the case in 
neutron scattering [for the spherically symmetric 
models such fitting was made, for example, by 
Cusack et al. (1985) and Pedersen (1993)]. 

6. D i s c u s s i o n  

The methods described above are aimed at extracting 
more structural information from the SAS data than 
in the homogeneous particle approximation. A 
natural question that arises is whether this is justified 
given the restricted information content inherent in 
solution scattering, that is, whether the additional 
information contained in the contrast-variation 
experiments allows the more general representations 
of the particle structure to be used. 
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Let us consider the problem of the information 
content for the general approach [(12)-(18)]. From 
the Shannon sampling theorem, a scattering curve 
from a particle with maximum size D in the angular 
interval [0,Sma×] contains information about K =  
Sma×O/77 independent parameters (Moore, 1980; 
Taupin & Luzzati, 1982). There is at least one extra 
parameter, namely, the value of I(0), which is often 
forgotten [Shannon sampling refers to the function 
sI(s), thus I(0) gets lost]. According to this estimate, 
a set of K~ contrast-variation curves would provide 
3K+ K, independent parameters (three basic scat- 
tering curves plus the forward-scattering values that 
can be evaluated independently for each curve). On 
the other hand, the number of unknowns to be found 
is (L+ 1) 2 [as F(w) is real, one has f / . - - m  : ( - - l ) m f l m  

and I m ( t i m ) - 0  for m = 0 ] .  Each degree in the 
power series of the radial fimctions (13) brings the 
same additional number of unknowns. The charac- 
teristic ratio is thus 

Number of unknowns (N+ 2)(L+ 1) 2 
N 

RN = Number of parameters - 3K+K1 
(4o) 

With the linear approximation of the radial functions 
(N= 1), this ratio is better than that of the shape 
determination [the latter is (L+ I)Z/(K+ I)]. 
Enhancement of the radial functions may worsen the 
ratio (depending on how many curves are available). 
Note, however, that (40) in fact gives an upper limit 
of  R x as the unknowns are not independent. Thus, 
the number of independent parameters is lowered by 
six, owing to the arbitrary orientation and the posi- 
tion of the center of mass (Svergun & Stuhrmann, 
1991). Additional restrictions result from the positi- 
vity of F(w), from the known shape invariants 
(volume, surface, radius of gyration), as well as from 
the correlations (19) and (21). The effective number 
of unknowns is significantly reduced when a priori 
information about the particle symmetry is available, 
which leads to the selection rules for the harmonics 
to be used (see e.g. K6nig et al., 1993). 

For the other cases considered in this paper, the 
RN ratio is more favorable. Thus, the fluctuations are 
described with the help of a few parameters (A~ for 
higher harmonics). For the case of the two sub- 
particles with known structures, one has the fixed 
number of six parameters. The core-shell model is 
described by 2(L+ 1)2-6 coefficients, which are, 
again, not independent. Note that the models shown 
in Fig. 6 do not include the inhomogeneities inside 
the single domain, which can be taken into account 
using the scattering from fluctuations (32)-(33). 

The proposed approaches cover a wide range of 
possible practical applications. The method of (12)- 
(18) represents a new general algorithm for the joint 
analysis of the contrast-variation data and allows 

both shape and structure determinations. The search 
of the mutual positions of domains in complex 
particles can be effectively used to investigate the 
conformational changes in proteins with known crys- 
tallographic structure. The core-shell model ade- 
quately describes a wide variety of nucleoproteins 
and lipoproteins (ribosomal subunits, viruses, low- 
density lipoproteins etc.). The methods have been 
applied in the data interpretation of the contrast- 
variation experiments on the 50S ribosomal subunit 
of E. coli (Svergun, Koch & Serdyuk, 1994; Svergun, 
Koch, Pedersen & Serdyuk, 1994). The experimental 
data presented here in Fig. 8(a) also give a numerical 
example of estimation of the R N ratio. The maximum 
size of the 50S subunit is 25 nm and the five scat- 
tering curves contain approximately 3 x (25 × 1.5)/~ 
+ 5 = 41 parameters. At the resolution L = 5, a core- 
shell model is described by 2 x 6 2 -  6 = 66 values, 
which gives RN'-1.6. Bearing in mind that the 
unknowns are still correlated because of the condi- 
tions F(w) >_ G(w) >_ O, one can therefore justify the 
use of harmonics up to L = 5 in the core-shell model. 

With the methods described in the analysis of the 
contrast-variation data, normal precautions should 
be taken concerning the solvent influence [e.g. 
inhomogeneous hydrogen exchange in neutron scat- 
tering (Witz, 1983)]. On the other hand, these 
methods are not restricted to classical contrast varia- 
tion by solvent exchange. They can also be applied to 
the results of 'physical' contrast variation [e.g. by 
anomalous X-ray scattering (Stuhrmann, 1981) or 
spin-dependent neutron scattering (Stuhrmann, 
1989)] provided the contrast dependencies derived 
for these particular cases are used. 

The author is indebted to Dr M. Koch, Professor 
H. Stuhrmann and Dr J. Skov Pedersen for fruitful 
discussions and valuable comments on the manu- 
script. He thanks Dr J. Skov Pedersen for the 
smearing routines and Dr V. Lamzin for the experi- 
mental data on formate dehydrogenase. This work 
was supported by the NATO Linkage Grant LG 
921231. 

APPENDIX 

To evaluate the integral 
F 

K(F,q) = f Apy(r)r q dr, (4 l) 
0 

where Aps(r ) is the multistep function (23), it can be 
rewritten as a sum of integrals 

2 M  j6r  

K(r ,q)= E ( - -1)  j f rUdr 
j =  1 ( j -  l)6r 

=[2(6r)q+~/(q+ 1)] 
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X ~, ( - 1 ) J j q + l - ( 2 m ) q + l / 2  
=1 

=[2((~r)q+l/(q+ 1 jq+l -- 2 

x Z ( 2 j - 1 )  q + ' - ( 2 M )  q+1/2, (42) 
j = l  

where 2M is the number of steps (an even number, as 
seen in Fig. 4a). The two sums in square brackets can 
be expressed (Gradshtein & Ryzhik, 1963) as 

2M 
~" jq+l  = ( 2 m ) q +  2/(q + 2) + (2M)  q+ '/2 

j = l  

+ (q+ 1)(2M)q/12 + ... (43) 

M 
7, ( 2 j - 1 )  q+' =(2M)q+z/2(q+2) 

j = l  

- ( q +  1)(2M)q/12 + ... (44) 

(for 2 M > >  1, its degrees of q - 1  and less can be 
omitted). Substituting (43)-(44) into (42) and taking 
into account that F = 2M(Sr), one obtains K(F,q)= 
6r Fq/2. 
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